
Analysis of aeroplane boarding via spacetime geometry and random matrix theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 L453

(http://iopscience.iop.org/0305-4470/39/29/L01)

Download details:

IP Address: 171.66.16.105

The article was downloaded on 03/06/2010 at 04:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/29
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) L453–L459 doi:10.1088/0305-4470/39/29/L01

LETTER TO THE EDITOR

Analysis of aeroplane boarding via spacetime
geometry and random matrix theory

E Bachmat1, D Berend1,2, L Sapir3, S Skiena4 and N Stolyarov1

1 Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel
2 Department of Mathematics, Ben-Gurion University, Beer-Sheva 84105, Israel
3 Department of Management and Industrial Engineering, Ben-Gurion University,
Beer-Sheva 84105, Israel
4 Department of Computer science, SUNY at Stony Brook, Stony Brook, NY 11794, USA

E-mail: ebachmat@cs.bgu.ac.il

Received 2 February 2006
Published 5 July 2006
Online at stacks.iop.org/JPhysA/39/L453

Abstract
We show that aeroplane boarding can be asymptotically modelled by two-
dimensional Lorentzian geometry. Boarding time is given by the maximal
proper time among curves in the model. Discrepancies between the model and
simulation results are closely related to random matrix theory. The models can
be used to explain why some commonly practised airline boarding policies are
ineffective and even detrimental.

PACS numbers: 02.10.Yn, 02.40.−k, 02.50.−r, 05.40.−a, 89.40.Dd

Aeroplane boarding is a process which is experienced daily by millions of passengers
worldwide. Airlines have developed various strategies in the hope of shortening boarding
time, typically leading to announcements of the form ‘passengers from rows 40 and above are
now welcome to board the aeroplane’, often heard around airport terminals. We will show
how the aeroplane boarding process can be asymptotically modelled by spacetime geometry.
The discrepancies between the asymptotic analysis and finite population results will be shown
to be related in some cases to random matrix theory (RMT). Previously, aeroplane boarding
has only been studied empirically via discrete event simulations [1–3].

We model the aeroplane boarding process as follows. Passengers 1, . . . , N are represented
by coordinates Xi = (qi, ri), where qi is the index of the passenger along the boarding queue
(1st, 2nd, 3rd and so on), and r is his/her assigned row number. We rescale (q, r) to
[0, 1] × [0, 1]. We assume that the main cause of delay in aeroplane boarding is the time it
takes passengers to organize their luggage and seat themselves, once they have arrived at their
assigned row. The input parameters for our model are

u: the average amount of aisle length occupied by a passenger.
w: the distance between successive rows.
b: the number of passengers per row.

0305-4470/06/290453+07$30.00 © 2006 IOP Publishing Ltd Printed in the UK L453

http://dx.doi.org/10.1088/0305-4470/39/29/L01
mailto:ebachmat@cs.bgu.ac.il
http://stacks.iop.org/JPhysA/39/L453


L454 Letter to the Editor

D: the amount of time (delay) it takes passengers to clear the aisle, once they have arrived
at their designated row.
p(q, r): the joint distribution of a passenger’s row and queue joining time. p(q, r) is
directly affected by the airline policy and the way passengers react to the policy.

For thepurposesofpresentationweshallassumethat u,w, b,D are allfixed. The aeroplane
boarding process produces a natural partial-order relation of blocking among passengers. We
say that passenger X blocks passenger Y if it is impossible for passenger Y to reach his/her
assigned row before passenger X (and others blocked by X) has sat down and cleared the aisle.
Aeroplane boarding functions as a peeling process for the partial order defined by the blocking
relation. At first, passengers who are not blocked by any other passengers sit down. These
passengers are the minimal elements in the blocking relation. In the second round, passengers
who are not blocked by passengers other than those of the first round are seated and so forth.
Boarding time thus coincides with the size of the longest chain in the partial order.

We assign to the boarding process with parameters u, b,w,D, p(q, r) a Lorentz metric
defined on the (q, r) unit square

ds2 = 4D2p(q, r)(dq dr + kα(q, r) dq2), (1)

where k = bu/w and α(q, r) = ∫ 1
r

p(q, z) dz. There are two properties of the metric which
relate it to the boarding process.

(M1) The volume form of the metric is proportional to the passenger density distribution
p(q, r).

(M2) The blocking partial order among passengers during the boarding process
asymptotically coincides with the past–future causal relation induced by the metric on the
passengers viewed as events in spacetime via their q, r coordinate representation.

To establish the second property, consider passengers represented by X = (q, r) and
X′ = (q + dq, r + dr), dq > 0. Consider the time when passenger X arrives at his/her
designated row. All passengers with row numbers beyond r, which are behind passenger X
in the queue but in front of passenger X′, will occupy aisle space behind passenger X. The
number of such passengers is roughly Nα dq. Each such passenger occupies u/w units of
aisle length where we take the basic aisle length unit to be the distance between successive
rows. The row difference between X and X′ is −(N/b) dr . We conclude that passenger X is
blocking passenger X′, via the passengers who are between them, roughly when dq � −αk dr ,
a condition which coincides (together with dq > 0) with the causal relation induced by the
metric.

By the two main properties, we may approximate asymptotically the aeroplane boarding
process by the peeling process applied to the past–future causal relation on points in the
associated spacetime, sampled with respect to the volume form. By a well-known result, two-
dimensional Lorentzian metrics are conformally flat; hence, after an appropriate coordinate
transformation we may assume that the spacetime is given by a metric of the form

ds2 = r(x, y) dx dy (2)

on some domain (not necessarily the unit square). In the new coordinates x, y, which
are lightlike coordinates, chains in the causal relation coincide with increasing (upright)
subsequences, namely, sequences of points (xi, yi) such that xi � xj and yi � yj for i < j .
The peeling process applied to the causal relation coincides in this case with patience sorting
which is a well-known card game process which optimally computes the longest increasing
subsequence in a permutation [4, 5].

We define T (X) as the maximal proper time (integral over ds) of a timelike trajectory
ending at X = (q, r). We also define L(τ) as the length (integral over

√−ds2) of the spacelike
curve which is defined by the equation T (X) = τ .
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Using the analysis of the size of maximal increasing subsequences given in [6, 7], the two
basic properties lead to the following modelling statement.

The boarding time of passenger i is approximately
√

NT (Xi). In particular the total
boarding time is approximately

√
N MaxXT (X), where MaxXT (X) is the maximal proper

time of a curve in the unit square with respect to the Lorentzian metric.
Here the word approximately means that the ratio tends to 1 with probability approaching

1 as the number of passengers N tends to infinity.
We apply the statement to the analysis of boarding times. Consider first the case where

the airline does not have a boarding policy, namely, passengers queue at uniformly random
times; therefore, p(q, r) = 1, α = 1 − r and the corresponding metric is

ds2 = 4 dq(dr + k(1 − r) dq). (3)

We use this model to study the effect of aeroplane design parameters such as the distance
between rows and the number of passengers per row on boarding time. These parameters
affect boarding time through the parameter k = ub

w
. We let d = MaxXT (X) be the diameter

of the model. Letting A = (0, 0) and B = (1, 1) we note that any point C in the unit square
satisfies A ≺ C ≺ B, where ≺ denotes the causal relation induced by (3). We conclude
that the maximal curve must begin at A and end at B. To find the maximal proper time curve
we solve the Euler–Lagrange equation for proper time subject to the constraints of lying in
the unit square and passing through A and B. Solutions to the unconstrained Euler–Lagrange
(geodesic) equation are of the form

r = c1 e2kq + c2 ekq + 1. (4)

For k � ln(2) the geodesic solution passing through A and B is contained in the interior of the
unit square and is therefore the maximal curve. The length of the curve is

d(k) = 2

√
ek − 1

k
. (5)

For k > ln(2) the maximal curve contains a portion which runs along the q-axis until reaching
the point (1 − ln(2)/k, 0). From this point the curve follows a geodesic to the point (1, 1).
The geodesic is tangent to the q-axis at (1 − ln(2)/k, 0) and this condition is in fact used to
determine the point of departure from the boundary. We have

d(k) = 2
√

k + 2(1 − ln(2))/
√

k. (6)

We compared the above computations with simulations of our model of the boarding
process. When N = 106, the length of the maximal chain matches well with the estimated
values derived from the spacetime model. For k = 0.5, the length of the maximal chain in the
simulation was 2261, while the estimated value is 2278; while for k = 5, the corresponding
values were 4589 and 4740, respectively.

We now consider more realistic values of N, namely, N = 100 and N = 200. Table 1
presents the average boarding time results for 1000 computer simulations of the boarding
process for several settings of k, compared with the boarding time estimate computed via
the spacetime model. Upon inspection, table 1 shows that for realistic values of N, there are
differences in the range of 20–60% between the asymptotic boarding time estimates computed
via Lorentzian geometry and the boarding time computed via simulations of the boarding
process. We note the important fact that in all cases the Lorentzian estimate is larger.

To analyse the differences between our Lorentzian estimates and the simulation results
we consider LN , the random variable representing the boarding time according to the
boarding process model (the simulation results). We define the discrepancy random variable
MN = LN − √

Nd(k) which measures the difference between the boarding time and the
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Figure 1. The image of the unit square under W .

Table 1. A comparison of spacetime model estimates with the average over 1000 simulations of
boarding time results.

k N Simulation result Spacetime estimate

0.5 100 18.1 22.8
0.5 200 26.8 32.2
2.0 100 23.0 32.5
2.0 200 34.7 45.8
5.0 100 29.0 47.5
5.0 200 44.9 66.9

Lorentzian estimate. The curvature of the metric given in (3) vanishes; therefore, we can
apply a coordinate transformation W which changes the metric to the form

ds2 = 4 dx dy. (7)

Let S be the unit square and consider U = W(S) its image under W . We refer to figure 1 for an
illustration of the following arguments. We recall that any point C ∈ S satisfies A ≺ C ≺ B

where A = (0, 0) and B = (1, 1). We conclude that S will be mapped into the set of points D,
satisfying W(A) ≺ D ≺ W(B) where now ≺ denotes the causal relation w.r.t. (7). The set
of such points is a rectangle R with sides parallel to the axis and corners at W(A) and W(B).
W maps lightlike curves w.r.t. (3) into lightlike curves w.r.t. (7), which are simply vertical and
horizontal lines. It also maps the geodesics of (3) which are given by (4) into straight lines.
The left, right and top sides of S are lightlike and will therefore be mapped to the left, right
and top sides of R. On the other hand, the bottom of S is not lightlike nor a geodesic and will
therefore be mapped to a curve within R which will be concave since by (4) the geodesics
connecting points at the bottom of S lie below S. When k � ln(2) the geodesic connecting
A and B lies entirely within S. The image of this geodesic is the diagonal of R and therefore
U = W(S) will contain the above diagonal triangle T within R. When k > ln(2), the geodesic
is not contained in S and consequently the diagonal of R is not contained in U.

We can also compute the volumes of U and R as follows. Since W preserves volumes,
the volume of U w.r.t. (7) equals the volume of S w.r.t. (3). The later volume can be computed
directly from the volume form formula

√−det(g) dq dr and we get vol(U) = 2. The volume
form formula also tells us that the volume w.r.t. (7) is twice the usual Euclidean area. Letting δx

and δy denote the coordinate differences between W(A) and W(B), we have vol(R) = 2δxδy.
The length of the diagonal of R is �(diag) = 2

√
δxδy; therefore, vol(R) = �(diag)2/2. On
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the other hand, the diagonal is simply the image under W of the geodesic connecting A and

B, whose length from (5) is 2
√

ek−1
k

. We conclude that vol(R) = 2 ek−1
k

.
As noted previously, for the metric (7), the past–future causal chains correspond to

increasing sequences of points. We also note that since the spacetime points are sampled
according to the volume form, they are uniformly distributed. The problem is therefore
reduced to that of computing discrepancies of increasing subsequences for N uniformly
distributed points in U = W(S). Discrepancies have been studied in the context of increasing
subsequences of uniformly distributed points in the rectangle R [8], and in the above diagonal
triangle T within R [9]. Following [8] it is convenient to consider the Poissonized version
where the number of chosen points is given by a Poisson distribution with parameter N. In
both cases the discrepancy MN has order of magnitude N1/6. We therefore define the scaled
discrepancy �N = MN/N1/6. In the case of R the scaled discrepancy is given asymptotically
by the Tracy–Widom distribution F2 [10], which measures the (scaled) discrepancy of the
largest eigenvalue of an N by N matrix in the Gaussian unitary ensemble (GUE) [11],
in comparison with 2

√
N . For N/2 uniformly distributed points in T, the normalized

discrepancy is given asymptotically by the Tracy–Widom distribution F4 [10], which is
the normalized discrepancy of the largest eigenvalue in the Gaussian symplectic ensemble
(GSE). The averages for these distributions are E(F2) ≈ −1.77 and E(F4) ≈ −2.3. After
Poissonization we can think of Poisson(N) uniformly distributed points in U as the restriction
to U of Poisson

(
N vol(R)

vol(U)

) = Poisson
(
N ek−1

k

)
uniformly distributed points in R.

The results of [8, 9] remain the same after de-Poissonization and can therefore be applied
to the original version of our problem. When k � ln(2) we have T ⊂ U ⊂ R, so applying the
refined estimates to N ek−1

k
points in R we obtain

F4(z) � Pr

(
�N �

(
ek − 1

k

)1/6

z

)
� F2(z). (8)

In particular, we obtain the finer asymptotic estimate

−2.3

(
ek − 1

k

)1/6

� E(�N) � −1.77

(
ek − 1

k

)1/6

. (9)

Applying the refined estimates to the results from table 1 with k = 0.5 we see that the refined
estimate (9) holds already for the realistic values N = 100, 200. Indeed, 17.7 < 18.1 < 18.8
for N = 100 and 26.4 < 26.8 < 27.8 for N = 200.

The discrepancy MN experiences a phase transition in behaviour at the value k = ln(2).
For example, when k = 3 linear regression produced a tight fit with the formula:

E(MN) ∼ −4.85N0.222. (10)

We do not know how to compute analytically the correct order of magnitude of MN when
k > ln(2). However, we can provide the following heuristic explanation for the change in
discrepancy behaviour. When k > ln(2) the maximal curve contains a portion of the bottom
edge of the unit square. The argument essentially states that the form of the metric (3) near
the bottom edge forces the portion of the maximal chain along the bottom edge to have height
(transversal) fluctuations which are too small to produce a small discrepancy.

Consider the length of the longest chain between the point A = (0, 0) and a second point
Z = (0, z) at the bottom edge of the unit square. The Lorentzian estimate for the length of the
sequence is 2

√
kq

√
N . We may consider the narrow band Ba = {(q, r)|0 � r � N−a} at the

bottom of the unit square. Assume that a given chain between A and Z has a non-negligible
portion which is outside Ba , namely, there are numbers 0 < c < d < z such that all points
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(q, r) in the chain with c < q < d satisfy r > N−a . On the complement of Ba consider the
constant metric

ds2 = 4 dq(dr + k(1 − N−a) dq). (11)

Any causal chain (in the complement of Ba) w.r.t. the metric (3) is also a chain w.r.t. (11). The
longest chain w.r.t. (11) between (c,N−a) and (d,N−a) has, with high probability (w.h.p.),
size at most 2

√
k(c − d)

√
N − O(N1/2−a). The chain will therefore have w.h.p. a negative

discrepancy whose order of magnitude is at least N1/2−a . We see that whenever a < 1/3, a
maximal chain which is not essentially confined to Ba will have w.h.p. negative discrepancy
whose order of magnitude is at least N1/2−a � N1/6. On the other hand, it follows from the
computations in [12] that whenever a > 1/6, a chain which is confined to Ba will produce
w.h.p. a negative discrepancy whose order of magnitude is larger than N1/6. Putting these
arguments together for a = 1/4 provides a strong heuristic evidence that the discrepancy is
negative with order of magnitude larger than N1/6.

The spacetime metrics given by formula (1) can be used for comparing different boarding
policies. Boarding policies affect the passenger distribution function p(q, r). For example,
assume that the policy is to board the back third of the aeroplane, followed by the front third
and finally the middle third. The corresponding distribution p(q, r) is given by p(q, r) = 3
on the sub squares [0, 1/3] × [2/3, 1], [1/3, 2/3] × [0, 1/3], [2/3, 1] × [1/3, 2/3], and zero
elsewhere. When p(q, r) = 0 the metric given in (1) degenerates. This problem can be
overcome by setting p(q, r) = ε in such regions and letting ε tend to zero. An equivalent
and simpler approach is to allow the expression dq dr + kα(q, r) dq2 from (1) to determine
a light cone at all points. The aeroplane boarding time is then given asymptotically by
the maximal proper time among all timelike curves even when p(q, r) vanishes in certain
regions.

A comparison of the results of the spacetime computations, with the parameter k = 4,
and the results of detailed event-driven simulations of boarding processes [2, 3], shows that
the spacetime estimates are in almost complete agreement with the event-driven simulation
results regarding the ranking of the different policies. This is somewhat surprising given that
the trace-driven simulations in [2] take into account many details of actual boarding processes
which are not considered by our model of the boarding process. The large discrepancies which
we have noted previously between our own model of the boarding process and the spacetime
estimates are less of a factor since when comparing boarding strategies only ratios of boarding
times matter and these are less affected by the discrepancies since in all cases the spacetime
models lead to overestimates. Following the analysis we conclude that

(1) the commonly practiced back to front boarding policies which board passengers from the
back of the aeroplane first are ineffective for realistic values of 3 < k < 5 and

(2) among row-dependent policies which do not severely constrain passengers, random
boarding (no policy) is almost optimal.

Finally, our methods can be applied to yield new insights into several other discrete
processes including patience sorting [5], polynuclear growth models (PNG) [13], kinematics
of causal sets [14], maximal layers in planar domains [15] and scheduling of I/O requests to
disk drives [16, 17].

Acknowledgments

We are grateful to Perci Deift, Ofer Zeitouni and Jinho Baik for very useful discussions.
This research has been partially supported by a grant from the dean of natural sciences at
Ben-Gurion U. The first author has been partially supported by an IBM faculty award.



Letter to the Editor L459

References

[1] Marelli S, Mattocks G and Merry R 2000 Boeing Aero Magazine 1
[2] Van Landegham H and Beuselinck A 2002 Eur. J. Opt. Res. 142 294
[3] van den Briel M, Villalobos J, Hogg G, Lindemann T and Mule A 2005 Interfaces 35 191
[4] Mallows C L 1973 Bull. Inst. Math. Appl. 9 216
[5] Aldous D and Diaconis P 1999 Bull. A. Math. Soc. 36 413
[6] Deuschel J D and Zeitouni O 1995 Ann. Probab. 23 852
[7] Vershik A and Kerov S 1977 Sov. Math. Dokl. 18 527
[8] Baik J, Deift P and Johansson K 1999 J. Am. Math. Soc. 12 1119
[9] Baik J and Rains E 2001 Duke J. Math. 109 205

[10] Tracy C A and Widom H 1994 Commun. Math. Phys. 159 151
Tracy C A and Widom H 1996 Commun. Math. Phys. 177 727

[11] Mehta M L 2004 Random Matrices (New York: Academic)
[12] Johansson K 2000 Commun. Math. Phys. 209 437
[13] Prahofer M and Spohn H 2000 Phys. Rev. Lett. 84 4882
[14] Bombelli L, Lee J, Meyer D and Sorkin R D 1987 Phys Rev. Lett. 59 521
[15] Devroye L 1993 Comput. Math. Appl. 25 19
[16] Andrews M, Bender M and Zhang L 2002 Algorithmica 32 277
[17] Bachmat E 2002 Proc. Symp. Th. of Comput. (STOC) p 277

http://dx.doi.org/10.1016/S0377-2217(01)00294-6
http://dx.doi.org/10.1287/inte.1050.0135
http://dx.doi.org/10.1090/S0273-0979-99-00796-X
http://dx.doi.org/10.1090/S0894-0347-99-00307-0
http://dx.doi.org/10.1215/S0012-7094-01-10921-6
http://dx.doi.org/10.1007/BF02100489
http://dx.doi.org/10.1007/BF02099545
http://dx.doi.org/10.1007/s002200050027
http://dx.doi.org/10.1103/PhysRevLett.84.4882
http://dx.doi.org/10.1103/PhysRevLett.59.521
http://dx.doi.org/10.1016/0898-1221(93)90195-2
http://dx.doi.org/10.1007/s00453-001-0071-1

	Acknowledgments
	References

